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Introduction

Backgroung

In this talk, we suggest an extension of the classical discrete-time risk model in the
context of a portfolio assuming two dependant lines of business.
We develop an algorithm based on Lindley’s recursive relation to compute finite time
ruin probabilities.
We then suggest an algorithm to determine the initial surplus an insurer should inject
in both lines.
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Introduction

Motivation

The principal motivation of this talk is to model each line of business separately,
specifing the structure dependence between the lines, instead of modeling direclty the
sum of both lines of business.
We could (and we will!) extend the present model in a multivariate context of j
dependent lines of business.
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Classical discrete-time risk model Definitions and notation

Processes (1/4)

In this section, we present the classical discrete-time risk model and the assumptions
made for the presentation.
First, we define the aggregate claim amount process. Let W be that process. We have

W = {Wn, n ∈ N∗}

where Wn is the aggregate claim amount for the n-th period.
We then define the loading factor and loaded premium processes. Let η and π be,
respectively, these processes. We have

η = {ηn, n ∈ N∗}

and

π = {πn, n ∈ N∗}

where ηn and πn are, respectively, the loading factor and the loaded premium for the
n-th period.
The three last processes are linked by the relation

πn = (1 + ηn)E [Wn] .
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Classical discrete-time risk model Definitions and notation

Processes (2/4)

For the presentation, we make the following assumptions :
The random variables (r.v.) of the process W are independent and identically
distributed (i.i.d.);
The loading factor is the same for each period.

With the last assumptions, we can shorten the notation and use the convention that

Wn ∼W ηn = η πn = π.

Next, we define the net loss and the cumulative net loss processes. Let L and V be,
respectively, these processes. We have

L = {Ln, n ∈ N}

and

V = {Vn, n ∈ N}

where Ln and Vn are, respectively, the net loss and the cumulative net loss for the
n-th period, with L0 = 0 and V0 = 0.
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Classical discrete-time risk model Definitions and notation

Processes (3/4)

We can express the last two processes in terms of W and η by the relations

Ln = Wn − π

and

Vn =
n∑

i=1

Li .

The last process we define is the maximum reach by the cumulative net loss. Let Z
be this process. We have

Z = {Zn, n ∈ N}

where Zn is the maximum reach by the cumulative net loss at the end of the n-th
period.
We can write Z in terms of L with the relation

Zn = max
i∈{0,1,...,n}

Vi = max
i∈{0,1,...,n}

(
i∑

j=0

Lj

)
. (1)
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Classical discrete-time risk model Definitions and notation

Processes (4/4)

We illustrate the processes we defined in the current section.
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Classical discrete-time risk model Definitions and notation

Time of ruin (1/2)

Our ultimate goal is to calculate a ruin probability for the model. Following this idea,
we first define the time of ruin. Let τ be this time of ruin. Using the processes we
previously define, we have

τ (u) =

{
argmin

n∈N
(Zn > u) , if max

n∈N
(Zn) > u

∞ , else

where u (u ≥ 0) is the initial capital injected by the insurer.
In this presentation, we are interested in the finite-time ruin probability over n periods.
We define it by

Ψ (u, n) = Pr [τ (u) ≤ n]
= Pr [Zn > u]
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Classical discrete-time risk model Definitions and notation

Time of ruin (2/2)

We illustrate the time of ruin on the following picture.
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where 0 ≤ u1 < 3 ≤ u2 < 4 ≤ u3 < 7 ≤ u4 < 8.
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Classical discrete-time risk model Evaluation of the ruin probability

Traditionnal method

In this subsection, we will look at two different ways to evaluate the finite-time ruin
probability defined in the last subsection.
First of all, we rewrite the ruin probability as

Ψ (u, n) = Pr [Zn > u]
= 1− FZn (u) .

As we can see, if we know the distribution of Zn, we know the ruin probability over
that n-period time for a given initial capital.
We can easily compute the c.d.f. of Zn by using a recursive formula. We have

FZn (x) =
bxc+π∑

i=0

Pr [W = i ]FZn−1 (x + π − i)

with FZ0 (x) = 1 for x ∈ R+.
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Classical discrete-time risk model Evaluation of the ruin probability

Lindley’s recursive relation (1/5)

We now look at an alternative way to calculate the ruin probability based on Lindley’s
recursive relation.
First, we define a new process Z̃ =

{
Z̃k , k ∈ N

}
where

Z̃n = Vn − min
i∈{0,1,...,n}

(Vi )

= max
i∈{0,1,...,n}

(Vn − Vi )

= max
i∈{0,1,...,n}

(
n∑

j=0

Lj −
i∑

j=0

Lj

)

= max
i∈{0,1,...,n}

(
n∑

j=i+1

Lj

)
. (2)
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Classical discrete-time risk model Evaluation of the ruin probability

Lindley’s recursive relation (2/5)

Proposition.

Since the random variables in L are i.i.d., each random variables in Z and Z̃ are equal in
distribution.

Proof.
First, expanding Zn by recalling (1), we obtain

Zn = max

 0︸︷︷︸
0 r.v.

, L1︸︷︷︸
1 r.v.

, L1 + L2︸ ︷︷ ︸
2 r.v.

, . . . , L1 + L2 + · · ·+ Ln︸ ︷︷ ︸
n r.v.

 .

Second, expanding Z̃n by recalling (2), we obtain

Z̃n = max

L1 + L2 + · · ·+ Ln︸ ︷︷ ︸
n r.v.

, L2 + L3 + · · ·+ Ln︸ ︷︷ ︸
(n−1) r.v.

, . . . , Ln︸︷︷︸
1 r.v.

, 0︸︷︷︸
0 r.v.

 .

Then, since the Ln are i.i.d., Zn and Z̃n have the same distribution.
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Classical discrete-time risk model Evaluation of the ruin probability

Lindley’s recursive relation (3/5)

Proposition.

In the present model, the dynamic of the process Z̃ is given by

Z̃n = max
(
Z̃n−1 + Ln, 0

)
, n ∈ N∗.

Proof.

max
(
Z̃n−1 + Ln, 0

)
= max

(
max

i∈{0,1,...,n−1}

(
n−1∑

j=i+1

Lj

)
+ Ln, 0

)

= max

(
max

i∈{0,1,...,n−1}

(
n∑

j=i+1

Lj

)
, 0

)

= max
i∈{0,1,...,n}

(
n∑

j=i+1

Lj

)
= Z̃n
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Classical discrete-time risk model Evaluation of the ruin probability

Lindley’s recursive relation (4/5)

We use the two last propositions to compute the finite-time ruin probability.
First, we have

Pr
[
Z̃n = k

]
= Pr

[
max

(
Z̃n−1 + Ln, 0

)
= k
]

=
k+π∑
i=0

Pr
[
max

(
Z̃n−1 + Ln, 0

)
= k

∣∣∣ Z̃n−1 = i
]
Pr
[
Z̃n−1 = i

]
=

k+π∑
i=0

ζ (k, i)Pr
[
Z̃n−1 = i

]
where

ζ (k, i) =
{

Pr [i + Ln ≤ 0] , k = 0
Pr [i + Ln = k] , k ∈ N∗

=
{

FW (π − i) , k = 0
Pr [W = k + π − i ] , k ∈ N∗

and Pr
[
Z̃0 = 0

]
= 1.
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Classical discrete-time risk model Evaluation of the ruin probability

Lindley’s recursive relation (5/5)

We then easily compute de c.d.f. of Zn with the relation

FZn (x) =
bxc∑
i=0

Pr
[
Z̃n = i

]
.

We then have

Ψ (u, n) = 1− FZn (u) .
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Classical discrete-time risk model Risk measures

Dynamic Value-at-Risk

We now introduce the dynamic Value-at-Risk.
We denote it by VaRκ (Zn), where

VaRκ (Zn) = F−1Zn (κ)

and

F−1Zn (κ) = inf
x∈R
{FZn (x) ≥ κ} .

In other words, VaRκ (Zn) is the minimal initial surplus for which the ruin probability
over n periods is lower than (1− κ).
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Bivariate extension of the classical discrete-time model Definitions and notation

Processes

In this section, we introduce an extension of the model in which there is two
dependant lines of business.
We use exactly the same notation as in the previous section, except that we add an
upper index representing the business line for each process.
For example, the bivariate aggregate claims process is represented by(

W (1),W (2)) .
We still make the assumptions that each couple in

(
W (1),W (2)) are i.i.d. and that

the loading factor (which can be different for each business line) are constant for
every period.
Note : W (1)

1 and W (2)
1 are dependent but W (1)

1 and W (1)
2 are independent.
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Bivariate extension of the classical discrete-time model Definitions and notation

Time of ruin (1/2)

Even if the processes are defined the same in the univariate and the bivariate model,
the definition of ruin is different among the two models.
With two lines of business, we can extend the concept of ruin probability. Indeed, we
can be interested by the ruin of a single line of business or by the ruin of the two lines
of business.
Let Ψand

(
u(1), u(2), n

)
and Ψor

(
u(1), u(2), n

)
be, respectively, the ruin probability for

the two lines of business and the ruin probability for at least one of the lines of
business over n periods and for which we have initial surplus of

(
u(1), u(2)).

Then, we have

Ψand
(
u(1), u(2), n

)
= Pr

[
τand
(
u(1), u(2)) ≤ n

]
Ψor
(
u(1), u(2), n

)
= Pr

[
τor
(
u(1), u(2)) ≤ n

]
where

τand
(
u(1), u(2)) = max

(
τ (1) (u(1)) , τ (2) (u(2)))

τor
(
u(1), u(2)) = min

(
τ (1) (u(1)) , τ (2) (u(2))) .
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Bivariate extension of the classical discrete-time model Definitions and notation

Time of ruin (2/2)

As it was the case for the univariate model, the strategy is to rewrite these two ruin
probabilities is terms of the multivariate c.d.f. of

(
Z (1),Z (2)).

We then have

Ψand
(
u(1), u(2), n

)
= Pr

[
Z (1)

n > u(1) ∩ Z (2)
n > u(2)]

= 1− FZ (1)
n

(
u(1))− FZ (2)

n

(
u(2))+ FZ (1)

n ,Z (2)
n

(
u(1), u(2)) (3)

and

Ψor
(
u(1), u(2), n

)
= Pr

[
Z (1)

n > u(1) ∪ Z (2)
n > u(2)]

= 1− FZ (1)
n ,Z (2)

n

(
u(1), u(2)) (4)
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Bivariate extension of the classical discrete-time model Ruin probabilities computation

Lindley’s recursive relation (1/3)

For the bivariate model, we will use an extension of the method based on Lindley’s
recursive relation presented in the previous section to compute the c.d.f. of Zn.

We then introduce the process
(
Z̃

(1)
, Z̃

(2))
, which is defined the same as in the

previous section.

Since the couples
(
L(1)

n , L(2)
n

)
are i.i.d.,

(
Z (1)

n ,Z (2)
n

)
and

(
Z̃ (1)

n , Z̃ (2)
n

)
are equal in

distribution.
The idea of the proof is the same as it was in the previous section.
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Bivariate extension of the classical discrete-time model Ruin probabilities computation

Lindley’s recursive relation (2/3)

Then, we have

Pr
[
Z̃ (1)

n = k1, Z̃ (2)
n = k2

]
= Pr

[
max

(
Z̃ (1)

n−1 + L(1)
n , 0

)
= k1,max

(
Z̃ (2)

n−1 + L(2)
n , 0

)
= k2

]
=

k1+π(1)∑
i1=0

k2+π(2)∑
i2=0

ζ (k1, k2, i1, i2)Pr
[
Z̃ (1)

n−1 = i1, Z̃ (2)
n−1 = i2

]
where

ζ (k1, k2, i1, i2) =


FW (1),W (2)

(
π(1) − i1, π(2) − i2

)
, (k1, k2) = (0, 0)

FW (1)=k1+π(1)−i1,W (2)
(
π(2) − i2

)
, (k1, k2) ∈ (N∗, 0)

FW (1),W (2)=k2+π(2)−i2

(
π(1) − i1

)
, (k1, k2) ∈ (0,N∗)

Pr
[
W (1) = k1 + π(1) − i1,W (2) = k2 + π(2) − i2

]
, (k1, k2) ∈ N∗2

and Pr
[
Z̃ (1)
0 = 0, Z̃ (2)

0 = 0
]

= 1.
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Bivariate extension of the classical discrete-time model Ruin probabilities computation

Lindley’s recursive relation (3/3)

We then easily compute de c.d.f. of
(
Z (1)

n ,Z (2)
n

)
with the relation

FZ (1)
n ,Z (2)

n
(x1, x2) =

bx1c∑
i1=0

bx2c∑
i2=0

Pr
[
Z̃ (1)

n = i1, Z̃ (2)
n = i2

]
.

We then use relation (3) and (4) to compute the desired ruin probabilities.
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Bivariate extension of the classical discrete-time model Numerical example

Hypothesis

Let W (1) ∼ Poisson (λ = 1.8) and W (2) ∼ NegBin (r = 4, q = 0.6).
The dependence between W (1) and W (2) is modeled by a Frank copula with
parameter α where

Cα (u1, u2) = − 1
α
ln

(
1 +

(
e−αu1 −1

) (
e−αu2 −1

)
e−α−1

)
, α 6= 0.

The loading factors are η(1) = 1
9 and η(2) = 1

8 .
The loaded premiums are π(1) = 2 and π(2) = 3.
We are interested in the two ruin probabilities over 12 periods.
We can see the effect of the dependence parameter α on the following illustrations.
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Bivariate extension of the classical discrete-time model Numerical example

Results (1/2)

We illustrate the two ruin probabilities for different levels of initial surplus.
α = −5
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Figure: Illustration of Ψand
(

u(1), u(2), 12
)
(left) and Ψor

(
u(1), u(2), 12

)
(right).

J.P. Le Cavalier (Université Laval) Bivariate discrete-time risk model July 16, 2014 28 / 45



Bivariate extension of the classical discrete-time model Numerical example

Results (1/2)

We illustrate the two ruin probabilities for different levels of initial surplus.
α = −1

0

5

10

15

0

5

10

15

0.0

0.2

0.4

0.6

0.8

1.0

u(1)

u(2)

ψ
an

d(u
(1

) , u
(2

) , 1
2)

0

5

10

15

0

5

10

15

0.0

0.2

0.4

0.6

0.8

1.0

u(1)

u(2)
ψ

or
(u

(1
) , u

(2
) , 1

2)

Figure: Illustration of Ψand
(

u(1), u(2), 12
)
(left) and Ψor

(
u(1), u(2), 12

)
(right).

J.P. Le Cavalier (Université Laval) Bivariate discrete-time risk model July 16, 2014 28 / 45



Bivariate extension of the classical discrete-time model Numerical example

Results (1/2)
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Bivariate extension of the classical discrete-time model Numerical example

Results (2/2)

When α increases, Ψand
(
u(1), u(2), n

)
increases.

When α increases, Ψor
(
u(1), u(2), n

)
decreases.

These results are instinctive.
When dependence between lines of business is greater, if one line of business has a
problem or is going well, then the other one is more likely to follow.

Remarks
One could argue that lim

u(i)→∞
Ψand

(
u(1), u(2), n

)
= 0, i ∈ {1, 2}. Clearly, when the

initial surplus of one line of business is going to infinity, this line of business can’t ruin,
making impossible that both lines of business ruin.
One could argue that lim

u(i)→∞
Ψor
(
u(1), u(2), n

)
= Ψ

(
u(j), n

)
, (i , j) ∈ {1, 2}2 , i 6= j.

Again, this line of business can’t ruin, making the probability that at least one line of
business ruins equal directly to the marginal ruin probability of the other line of
business.
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Risk measures for the bivariate extension of the classical discrete-time model

Section summary
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (1/8)

Here, we study an extended risk measure of the univariate dynamic VaR.
In the univariate case, the dynamic VaR was giving us the minimal initial surplus
needed to keep the ruin probability below (1− κ).
We use the same approach here, but with both the ruin probability "and" and "or".
First, we can define two different sets containing every couple which meet this
condition individually. We then have

D(and)
n;κ =

{(
u(1), u(2)) : Ψand

(
u(1), u(2), n

)
≤ 1− κ

}
and

D(or)
n;κ =

{(
u(1), u(2)) : Ψor

(
u(1), u(2), n

)
≤ 1− κ

}
.

One can easily show that D(or)
n;κ ⊆ D(and)

n;κ using the fact that
Ψor
(
u(1), u(2), n

)
≤ Ψand

(
u(1), u(2), n

)
.
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (2/8)

We illustrate D(and)
n;κ and D(or)

n;κ .
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Figure: Illustration of D(and)
12;0.85 (left) and D(or)

12;0.85 (right).
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (3/8)

Although the ruin probability of each couple in D(and)
n;κ and D(or)

n;κ is lower than (1− κ),
the majority of them are not efficient.
The next step is then to limit these sets to their respective efficient subset D′(and)

n;κ and
D′(or)n;κ .
Then, we have

D′(and)
n;κ =

{ (
u(1), u(2)) ∈ D(and)

n;κ :{(
u(1) − 1, u(2)) , (u(1), u(2) − 1

)}
∩ D(and)

n;κ = ∅

}
and

D′(or)n;κ =
{ (

u(1), u(2)) ∈ D(or)
n;κ :{(

u(1) − 1, u(2)) , (u(1), u(2) − 1
)}
∩ D(or)

n;κ = ∅

}
.
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (4/8)

We illustrate D′(and)
n;κ and D′(or)n;κ .
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (5/8)

Now that we have the efficient subsets, we will restrain them again by choosing the
couples in the efficient subsets for which the insurer will have the lowest initial cost.
These couples are represented by the lowest diagonal containing at least one couple.
Then, we have

D′′(and)
n;κ = argmin

(u(1),u(2))∈D′(and)
n;κ

(
u(1) + u(2))

and

D′′(or)n;κ = argmin
(u(1),u(2))∈D′(or)n;κ

(
u(1) + u(2)) .
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (6/8)

We illustrate D′′(and)
n;κ and D′′(or)n;κ .
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (7/8)

The couples in the subsets D′′(and)
n;κ and D′′(or)n;κ need the same initial surplus for the

insurer.
The different couples are just different ways to allocate the initial surplus among the
two lines of business. The insurer will logically choose the one which is minimizing his
selected ruin probability.
Then, we have

D∗(and)
n;κ = argmin

(u(1),u(2))∈D′′(and)
n;κ

(
Ψand

(
u(1), u(2), n

))
and

D∗(or)
n;κ = argmin

(u(1),u(2))∈D′′(or)n;κ

(
Ψor
(
u(1), u(2), n

))
.
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Optimal initial surplus (8/8)

We illustrate D∗(and)
n;κ and D∗(or)

n;κ .
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Risk measures for the bivariate extension of the classical discrete-time model Bivariate dynamic VaR

Improvements

With the present approach, the insurer can choose to keep one of the ruin probability
under (1− κ).
It could be interesting to combine the two ruin probabilities and find the optimal way
to allocate the initial surplus while keeping the ruin probability "and" below (1− κand)
and the ruin probability "or" below (1− κor).
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Risk measures for the bivariate extension of the classical discrete-time model Numerical example

Hypothesis

We use the same numerical example than in the previous section.
We want to see the impact of the dependence parameter α on the initial surplus that
will choose to inject the insurer.
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Risk measures for the bivariate extension of the classical discrete-time model Numerical example

Results (1/3)

We illustrate the choosen initial surplus for each ruin probability.
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(left) and Ψor
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(right).
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Risk measures for the bivariate extension of the classical discrete-time model Numerical example

Results (2/3)

The results depending on κ and α are presented in the following table :

Table: Some values of D∗(and)
12;κ .

κ
α

-5 -1 1 5
0.85 ( 2, 0) ( 3, 0) ( 3, 0) ( 4, 0)
0.90 ( 3, 0) ( 4, 0) ( 5, 0) ( 5, 0)
0.95 ( 5, 0) ( 6, 0) ( 6, 0) ( 7, 0)
0.99 ( 8, 0) ( 9, 0) ( 9, 0) (10, 0)
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Risk measures for the bivariate extension of the classical discrete-time model Numerical example

Results (2/3)

The results depending on κ and α are presented in the following table :

Table: Some values of D∗(or)
12;κ .

κ
α

-5 -1 1 5
0.85 ( 6, 9) ( 6, 9) ( 6, 9) ( 6, 8)
0.90 ( 7,10) ( 7,10) ( 7,10) ( 7,10)
0.95 ( 9,12) ( 9,12) ( 9,12) ( 9,12)
0.99 (12,17) (12,17) (11,18) (11,18)
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Risk measures for the bivariate extension of the classical discrete-time model Numerical example

Results (3/3)

The best way to allocate the initial surplus to keep the ruin probability "and" below
(1− κ) is to give all the capital to the less risky line of business.
We only need to minimize the ruin probability of one line of business to minimize the
"and" probability.
When we work with the "or" probability, we need to manage the initial surplus among
the two lines of business.
Clearly, in this case, minimizing the ruin probability of only one line of business won’t
minimize the "or" probability.
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Thank you for your attention!

J.P. Le Cavalier (Université Laval) Bivariate discrete-time risk model July 16, 2014 44 / 45



References

S. Asmussen, Applied probability and queues., Springer-Verlag, New York, 2003.

W. Chan, Yang H., and Zhang L., Some results on ruin probabilities in a
two-dimensional risk model.
H. Cossette, M. Mailhot, E. Marceau, and M. Mesfioui, Bivariate lower and upper
orthant value-at-risk, European Actuarial Journal 3 (2013), no. 2, 321–357.

E. Marceau, Modélisation et évaluation quantitative des risques en actuariat - modèles
sur une période, Springer-Verlag, France, 2013.

A. Prékopa, Multivariate value at risk and related topics, Annals of Operations
Research 193 (2012), no. 1, 49–69.

T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels, Stochastic processes for insurance
and finance., Wiley, New York, 1999.

J.P. Le Cavalier (Université Laval) Bivariate discrete-time risk model July 16, 2014 45 / 45


	Introduction
	Classical discrete-time risk model
	Definitions and notation
	Evaluation of the ruin probability
	Risk measures

	Bivariate extension of the classical discrete-time model
	Definitions and notation
	Ruin probabilities computation
	Numerical example

	Risk measures for the bivariate extension of the classical discrete-time model
	Bivariate dynamic VaR
	Numerical example


